Gate Drive Optocoupler, High Noise Immunity,
 2.5 A Output Current

FOD3120

Description

The FOD3120 is a 2.5 A Output Current Gate Drive Optocoupler, capable of driving most medium power IGBT/MOSFET. It is ideally suited for fast switching driving of power IGBT and MOSFETs used in motor control inverter applications, and high performance power system.

It utilizes onsemi's coplanar packaging technology, OPTOPLANAR ${ }^{\circledR}$, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection.

It consists of a gallium aluminum arsenide (AlGaAs) light emitting diode optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage.

Features

- High Noise Immunity Characterized by $35 \mathrm{kV} / \mu \mathrm{s}$ Minimum Common Mode Rejection
- 2.5 A Peak Output Current Driving Capability for Most $1200 \mathrm{~V} / 20$ A IGBT
- Use of P-Channel MOSFETs at Output Stage Enables Output Voltage Swing Close to the Supply Rail
- Wide Supply Voltage Range from 15 V to 30 V
- Fast Switching Speed
- 400 ns maximum Propagation Delay
- 100 ns maximum Pulse Width Distortion
- Under Voltage LockOut (UVLO) with Hysteresis
- Extended Industrial Temperate Range, $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Temperature Range
- Safety and Regulatory Approvals
- UL1577, 5000 V $_{\text {RMS }}$ for 1 min .
- DIN EN/IEC60747-5-5
- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of 1Ω (typ.) Offers Lower Power Dissipation
- $>8.0 \mathrm{~mm}$ Clearance and Creepage Distance (Option 'T' or 'TS')
- 1414 V Peak Working Insulation Voltage (VIORM)
- This is a $\mathrm{Pb}-$ Free Device

Applications

- Industrial Inverter
- Uninterruptible Power Supply
- Induction Heating
- Isolated IGBT/Power MOSFET Gate Drive

Related Resources

- FOD3150, 1 A Output Current, Gate Drive Optocoupler Datasheet
- https://www.onsemi.com/products/optoelectronics/

PDIP8 GW CASE 709AC

PDIP8 GW CASE 709AD

PDIP8 9.655x6.6, 2.54P CASE 646CQ

PDIP8 6.6x3.81, 2.54P CASE 646BW

MARKING DIAGRAM

3120 = Device Number
V = DIN_EN/IEC60747-5-5 Option (only
appears on component ordered with this option)
XX = Two Digit Year Code
YY = Two Digit Work Week
B = Assembly Package Code

FUNCTIONAL BLOCK DIAGRAM

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

Table 1. TRUTH TABLE

LED	$\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}$ "Positive Going" (Turn-on)	$\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}$ "Negative Going" (Turn-off)	$\mathbf{V}_{\mathbf{O}}$
Off	0 V to 30 V	0 V to 30 V	Low
On	0 V to 11.5 V	0 V to 10 V	Low
On	11.5 V to 13.5 V	10 V to 12 V	Transition
On	13.5 V to 30 V	12 V to 30 V	High

Table 2. PIN DEFINITIONS

Pin \#	Name	
1	NC	Not Connected
2	Anode	LED Anode
3	Cathode	LED Cathode
4	NC	Not Connected
5	$\mathrm{~V}_{\mathrm{SS}}$	Negative Supply Voltage
6	$\mathrm{~V}_{\mathrm{O} 2}$	Output Voltage 2 (internally connected to $\mathrm{V}_{\mathrm{O} 1}$)
7	$\mathrm{~V}_{\mathrm{O} 1}$	Output Voltage 1
8	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

Table 3. SAFETY AND INSULATION RATINGS
As per DIN EN/IEC 60747-5-5. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter		Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< $150 \mathrm{~V}_{\text {RMS }}$		I-IV		
		$<300 \mathrm{~V}_{\text {RMS }}$		I-IV		
		$<450 \mathrm{~V}_{\text {RMS }}$		I-III		
		$<600 \mathrm{~V}_{\text {RMS }}$		I-III		
		$\begin{aligned} & \hline<1000 \mathrm{~V}_{\mathrm{RMS}} \\ & \text { (Option T, TS) } \end{aligned}$		I-III		
	Climatic Classification			40/100/21		
	Pollution Degree (DIN VDE 0110/1.89)			2		
CTI	Comparative Tracking Index		175			
V_{PR}	Input to Output Test Voltage, Method $\mathrm{A}, \mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$		2262			Vpeak
	Input to Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$		2651			Vpeak
VIORM	Maximum Working Insulation Voltage		1414			Vpeak
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage		6000			Vpeak
	External Creepage		8.0			mm
	External Clearance		7.4			mm
	External Clearance (for Option T or TS, 0.4" Lead Spacing)		10.16			mm
DTI	Distance Through Insulation (Insulation Thickness)		0.5			mm
$\mathrm{T}_{\text {S }}$	Case Temperature (Note 1)		175			${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current (Note 1)		400			mA
$\mathrm{P}_{\text {S, OUTPUT }}$	Output Power (Duty Factor ≤ 2.7 \%) (Note 1)		700			mW
R_{10}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$ (Note 1)		10^{9}			Ω

[^0]Table 4. ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Symbol	Parameter		Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-55 to +125	${ }^{\circ} \mathrm{C}$
TOPR	Operating Temperature		-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature		-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Wave Solder Temperature (refer to page 13 for reflow solder profile)		260 for 10 s	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average Input Current		25	mA
$\mathrm{I}_{\text {(} \text { (eak) }}$	Peak Transient Forward Current (Note 2)		1	A
f	Operating Frequency (Note 3)		50	kHz
V_{R}	Reverse Input Voltage		5	V
O (PEAK)	Peak Output Current (Note 4)		3.0	A
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$	Supply Voltage		0 to 35	V
		$\mathrm{T}_{\mathrm{A}} \geq 90^{\circ} \mathrm{C}$	0 to 30	
$\mathrm{V}_{\mathrm{O} \text { (PEAK) }}$	Peak Output Voltage		0 to $V_{D D}$	V
$\mathrm{t}_{\mathrm{R}(\mathrm{IN})}, \mathrm{t}_{\mathrm{F}(\mathrm{IN})}$	Input Signal Rise and Fall Time		500	ns
$P D_{1}$	Input Power Dissipation (Note 5, Note 7)		45	mW
PD_{0}	Output Power Dissipation (Note 6, Note 7)		250	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Pulse Width, PW $\leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
3. Exponential Waveform, $I_{\text {OPEAK }} \leq|2.5 \mathrm{~A}|(\leq 0.3 \mu \mathrm{~s})$
4. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty $\mathrm{cycle}=1.1 \%$
5. Derate linearly above $87^{\circ} \mathrm{C}$, free air temperature at a rate of $0.77 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
6. No derating required across temperature range.
7. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Units
T_{A}	Ambient Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	Power Supply	15 to 30	V
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Input Current (ON)	7 to 16	mA
$\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$	Input Voltage (OFF)	0 to 0.8	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. ISOLATION CHARACTERISTICS
Apply over all recommended conditions, typical value is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\mathrm{ISO}}$	Input-Output Isolation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .<50 \%, \mathrm{t}=1.0 \mathrm{~min} .$, $\mathrm{I}_{-\mathrm{O}} \leq 10 \mu \mathrm{~A}, 50 \mathrm{~Hz}($ Note 8, Note 9)	5000			$\mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{R}_{\mathrm{ISO}}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}$ (Note 8)		10^{11}		Ω
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}$, Frequency $=1.0 \mathrm{MHz}($ Note 8)		1		pF

[^1]Table 7. ELECTRICAL CHARACTERISTICS
Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.2	1.5	1.8	V
$\Delta\left(\mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}\right)$	Temperature Coefficient of Forward Voltage			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$B V_{\text {R }}$	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5			V
C_{IN}	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		60		pF
${ }^{\text {IOH }}$	High Level Output Current (Note 3)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$	-1.0	-2.0	-2.5	A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V}$	-2.0		-2.5	
${ }_{\text {loL }}$	Low Level Output Current (Note 3)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}+3 \mathrm{~V}$	1.0	2.0	2.5	A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}+6 \mathrm{~V}$	2.0		2.5	
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-2.5 \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-6.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$		V
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}-0.1 \mathrm{~V}$		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.5 \mathrm{~A}$		$\mathrm{V}_{\mathrm{SS}}+2.5 \mathrm{~V}$	$\mathrm{V}_{\text {SS }}+6.25 \mathrm{~V}$	V
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{SS}}+0.1 \mathrm{~V}$	$\mathrm{V}_{S S}+0.25 \mathrm{~V}$	
IDDH	High Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA		2.8	3.8	mA
$\mathrm{I}_{\text {DLL }}$	Low Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{F}}=0$ to 0.8 V		2.8	3.8	mA
$\mathrm{I}_{\text {FLH }}$	Threshold Input Current Low to High	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		2.3	5.0	mA
$\mathrm{V}_{\mathrm{FHL}}$	Threshold Input Voltage High to Low	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
V UVLO+	Under Voltage Lockout Threshold	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	11.5	12.7	13.5	V
V UVLO-		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	10.0	11.2	12.0	V
UVLO ${ }^{\text {HYS }}$	Under Voltage Lockout Threshold Hysteresis			1.5		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 8. SWITCHING CHARACTERISTICS
Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time to Logic Low Output	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{Rg}=10 \Omega, \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Duty Cycle }=50 \% \end{aligned}$	150	275	400	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time to Logic High Output		150	255	400	ns
PWD	Pulse Width Distortion, \| $\mathrm{t}_{\text {PHL }}$ - $\mathrm{t}_{\text {PLH }}$ \|			20	100	ns
$\begin{gathered} \hline \text { PDD } \\ \text { (Skew) } \end{gathered}$	Propagation Delay Difference Between Any Two Parts or Channels, ($\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\text {PLH }}$) (Note 10)		-250		250	ns
t_{R}	Output Rise Time (10\% - 90\%)			60		ns
t_{F}	Output Fall Time (90\% - 10\%)			60		ns
tuvLo on	UVLO Turn On Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		1.6		$\mu \mathrm{s}$
tuvLo off	UVLO Turn Off Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$		0.4		$\mu \mathrm{s}$
$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	Common Mode Transient Immunity at Output High	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V} \\ & \text { (Note 11) } \end{aligned}$	35	50		kV/us
$\left\|C M_{L}\right\|$	Common Mode Transient Immunity at Output Low	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V} \text { (Note 12) } \end{aligned}$	35	50		kV/us

[^2]

Figure 1. Output High Voltage Drop vs. Output High Current

Figure 3. Output High Current vs. Ambient Temperature

Figure 5. Output Low Voltage vs. Output Low Current

Figure 2. Output High Voltage Drop vs. Ambient Temperature

Figure 4. Output High Current vs. Ambient Temperature

Figure 6. Output Low Voltage vs. Ambient Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Output Low Current vs. Ambient Temperature

Figure 9. Supply Current vs. Ambient Temperature

Figure 11. Low to High Input Current Threshold vs. Ambient Temperature

Figure 8. Output Low Current vs. Ambient Temperature

Figure 10. Supply Current vs. Supply Voltage

Figure 12. Propagation Delay vs. Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 13. Propagation Delay vs. LED Forward Current

Figure 15. Propagation Delay vs. Series Load Resistance

I_{F}, FORWARD LED CURRENT (mA)
Figure 17. Transfer Characteristics

Figure 14. Propagation Delay vs. Ambient Temperature

Figure 16. Propagation Delay vs. Load Capacitance

Figure 18. Input Forward Current vs. Forward Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 19. Under Voltage Lockout

Figure 20. Iol Test Circuit

Figure 21. I_{OH} Test Circuit

Figure 22. V_{OH} Test Circuit

Figure 23. V_{OL} Test Circuit

Figure 24. IDDH Test Circuit

Figure 25. IDDL Test Circuit

Figure 26. $I_{\text {FLH }}$ Test Circuit

Figure 27. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit

Figure 28. UVLO Test Circuit

Figure 29. $t_{\text {PHL }}, t_{\text {PLH }}, t_{R}$ and t_{F} Test Circuit and Waveforms

Figure 30. CMR Test Circuit and Waveforms

REFLOW PROFILE

Figure 31. Reflow Profile

Table 9. REFLOW PROFILE

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	$60-120 \mathrm{~s}$
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} / \mathrm{s} \mathrm{max}$.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150 \mathrm{~s}$
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (tp) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 s
Ramp-down Rate (T_{P} to T_{L})	$6^{\circ} \mathrm{C} / \mathrm{s} \mathrm{max}$.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 min. max.

ORDERING INFORMATION

Part Number	Package	Shipping †
FOD3120	DIP 8-Pin	$50 /$ Tube
FOD3120S	SMT 8-Pin (Lead Bend)	$50 /$ Tube
FOD3120SD	SMT 8-Pin (Lead Bend)	1000 / Tape \& Reel
FOD3120V	DIP 8-Pin, DIN EN/IEC60747-5-5 option	$50 /$ Tube
FOD3120SV	SMT 8-Pin (Lead Bend), DIN EN/IEC60747-5-5 option	$50 /$ Tube
FOD3120SDV	SMT 8-Pin (Lead Bend), DIN EN/IEC60747-5-5 option	$1000 /$ Tape \& Reel
FOD3120TV	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 option	$50 /$ Tube
FOD3120TSV	SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 option	$50 /$ Tube
FOD3120TSR2V	SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 option	700 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

PDIP8 6.6x3.81, 2.54P
CASE 646BW
ISSUE O
DATE 31 JUL 2016

5.08 (MAX)

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13445G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP8 6.6X3.81, 2.54P | PAGE 1 OF 1 |

PDIP8 9.655x6.6, 2.54P
CASE 646CQ
ISSUE O
DATE 18 SEP 2017

| DOCUMENT NUMBER: | 98AON13446G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP8 9.655X6.6, 2.54P | PAGE 1 OF 1 |

PDIP8 GW
CASE 709AC
ISSUE O
DATE 31 JUL 2016

NOTES:

A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13447G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP8 GW | PAGE 1 OF 1 |

LAND PATTERN RECOMMENDATION

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13448G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP8 GW | PAGE 1 OF 1 |

[^3] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FOD3120 FOD3120SDV FOD3120SV FOD3120TV FOD3120V FOD3120S FOD3120SD FOD3120T FOD3120TSR2V FOD3120TSR2 FOD3120TSV FOD3120TS

[^0]: 1. Safety limit value - maximum values allowed in the event of a failure.
[^1]: 8. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together.
 9. $5000 \mathrm{~V}_{\text {RMs }}$ for 1 minute duration is equivalent to $6000 \mathrm{VAC}_{\text {RMS }}$ for 1 second duration.
[^2]: 10. The difference between $t_{P H L}$ and $t_{\text {PLH }}$ between any two FOD3120 parts under same test conditions
 11. Common mode transient immunity at output high is the maximum tolerable negative $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, Vcm , to assure that the output will remain high (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
 12. Common mode transient immunity at output low is the maximum tolerable positive $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the leading edge of the common pulse signal, Vcm , to assure that the output will remain low (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
[^3]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

